Abstract

Much effort is being employed for designing "green" environmental emissive materials that are capable of color-tuning, i.e., down-converting the emission, and white-light generation (WLG). Here, we introduce a protein-based elastomer that can noncovalently bind a variety of chromophores while preventing their aggregation. Such binding capabilities are unique to the albumin-based materials that we use here in a process we refer to as "molecular doping". In the first part of this study, we explore the energy transfer across five different chromophores within the protein matrix, where the closely packed chromophore organization enables high energy-transfer efficiencies among them. In the second part, we show the easy control of blue, green, and red chromophores within the biopolymer, resulting in tunable emission properties of the film and WLG. The highly affordable chosen protein and the straightforward molecular doping strategy make our protein elastomers an attractive choice for an emissive material, as either a scaffold for investigating energy transfer in proteins or possible integration in light-emitting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.