Abstract

The COVID-19 has now been declared a global pandemic by the World Health Organization. No approved drug is currently available; therefore, an urgent need has been developed for any antiviral therapy for COVID-19. Main protease 3CLpro of this novel Coronavirus (SARS-CoV-2) play a critical role in the disease propagation, and hence represent a crucial target for the drug discovery. Herein, we have applied a bioinformatics approach for drug repurposing to identify the possible potent inhibitors of SARS-CoV-2 main proteases 3CLpro (6LU7). In search of the anti-COVID-19 compound, we selected 145 phyto-compounds from Kabasura kudineer (KK), a poly-herbal formulation recommended by AYUSH for COVID-19 which are effective against fever, cough, sore throat, shortness of breath (similar to SARS-CoV2-like symptoms). The present study aims to identify molecules from natural products which may inhibit COVID-19 by acting on the main protease (3CLpro). Obtained results by molecular docking showed that Acetoside (−153.06), Luteolin 7 -rutinoside (−134.6) rutin (−133.06), Chebulagic acid (−124.3), Syrigaresinol (−120.03), Acanthoside (−122.21), Violanthin (−114.9), Andrographidine C (−101.8), myricetin (−99.96), Gingerenone -A (−93.9), Tinosporinone (−83.42), Geraniol (−62.87), Nootkatone (−62.4), Asarianin (−79.94), and Gamma sitosterol (−81.94) are main compounds from KK plants which may inhibit COVID-19 giving the better energy score compared to synthetic drugs. Based on the binding energy score, we suggest that these compounds can be tested against Coronavirus and used to develop effective antiviral drugs.

Highlights

  • The World Health Organization has declared novel Coronavirus disease 2019 (COVID-19) to be a pandemic that went on to affect more than 219 countries with 44,002,003 confirmed cases and killed more than 1,167,988 people (WHO as of Oct 29, 2020) (Velavan and Meyer, 2020)

  • The present study focused on the main proteases 3C-Like Protease (3CLpro) PDB ID (6LU7), as potential target proteins for SARS - COVID19

  • The protein sequences of the two Coronavirus strains SARS-CoV main protease (Mpro) and the 2019-nCoV Mpro are 96% identical, and the active sites in both proteins remain free from mutations

Read more

Summary

Introduction

The World Health Organization has declared novel Coronavirus disease 2019 (COVID-19) to be a pandemic that went on to affect more than 219 countries with 44,002,003 confirmed cases and killed more than 1,167,988 people (WHO as of Oct 29, 2020) (Velavan and Meyer, 2020). The updated information is available on the WHO website (https:// www.who.int/emergencies/diseases/novel-coronavirus-2019). It has ignited fears of an impending economic crisis and recession in the infected countries (Buck et al, 2020). In India, the first case was reported on January 30, 2020; as of Oct 29, 2020; 8,040,203. Anti-viral Effects of Kabasura Kudineer on SARSCoV-2 3CLpro cases have been confirmed by COVID-19 infection along with 7,032,000 recoveries, 120,527 deaths with the fatality rate of 1.2% (Ministry of Health and Family Welfare, India). MERS HCoV and SARS were reported to be more virulent and have the highest mortality (Elfiky, 2020)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call