Abstract

Synthesis of bioactive heterocyclic compounds having effective biological activity is an essential research area for wide-ranging applications. In this study, a conventional methodology has been developed for the synthesis of a series of new 3-mercapto-1,2,4-triazole derivatives 4a-f. The purity and structure of the synthesized molecules were confirmed by 1H NMR, 13C NMR and elemental analysis. In addition, the prepared compounds were screened for their anti-proliferative activity against three human cancer cell lines including A549 (lung cancer), MCF7 (breast cancer) and SKOV3 (ovarian cancer) using MTT reduction assay. All the tested compounds demonstrated remarkable cytotoxic activity with IC50 values ranging from 3.02 to 15.37µM. The heterocyclic compound bearing 3,4,5-trimethoxy moiety was found to be the most effective among the series displaying an IC50 of 3.02µM specifically against the ovarian carcinoma cancer cell line (SKOV3). Moreover, Annexin V-FITC/propidium iodide staining assay indicated that this compound can induce apoptosis in SKOV3 cells. Furthermore, cell cycle assay showed a significant cell cycle arrest at the G2/M phase in a dose-dependent manner for this compound. The molecular docking results was showed binding modes of potent compound 4d perfectly corroborated the suggestion of binding to the colchicine site. The entire results conclude that 3-mercapto-1,2,4-triazole derivatives can be synthesized by a green method for biological and pharmacological applications. New analogs of 3-mercapto-1,2,4-triazole potential derivatives for anti-proliferative activity were synthesized. Cytotoxic activity of all synthesized compounds was evaluated against tree human cancer cell lines: lung (A549), breast (MCF7) and ovarian (SKOV3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.