Abstract

Fibronectin is a major component of the extracellular matrix and serves as support for cell adhesion and migration. Heparin and heparan sulfates (HS) have been reported to be high-affinity ligands for fibronectin. The strongest heparin/HS-binding site, named Hep-II, is located in the C-terminal repeat units FN12-14 of fibronectin. Mutational studies of recombinant fibronectin fragments and elucidation of the X-ray crystallographic structure of Hep-II in complex with heparin allowed localizing the main heparin/HS-binding site in FN13 to two parallel amino acid clusters: R1697, R1698, R1700 and R1714, R1716, R1745. Heparin, which is more sulfated than HS, is a better ligand for fibronectin, indicating that the sulfate density is important for the interactions. However, other studies demonstrated that the position of sulfate groups is also critical for high-affinity binding of the polysaccharides to fibronectin. In the current work, we used molecular docking of Hep-II domain of fibronectin with a series of differently sulfated dodecasaccharides of heparin to determine the implication of each sulfate position in the interaction. By using this approach, we confirmed the implication of R1697, R1698, R1700 and R1714 and we identified other amino acids possibly involved in the interaction. We also confirmed a hierarchic involvement of sulfate position as follows: 2S >> 6S > NS. Interestingly, the formation of stable complexes required a mutual adaptation between Hep-II domain and oligosaccharides, which was different according to the pattern of sulfation. Finally, we demonstrated that 3-O-sulfation of heparin stabilized even more the complex with Hep-II by creating new molecular interactions. Collectively, our models point out the complexity of the molecular interactions between heparin/HS and fibronectin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call