Abstract

Molecular docking was used to predict the binding between moxifloxacin (H2L) and the receptors of breast cancer mutant (3hb5), prostate cancer mutant (2q7k), crystal structure E. coli (3t88) and crystal structure of S. aureus (3q8u) and it was found that the moxifloxacin shows best interaction with 3hb5 receptor other than receptors. The geometrical structure of moxifloxacin is discussed. The proton-ligand dissociation constant of moxifloxacin (H2L) and metal-ligand stability constants of its complexes with metal ions (Mn2+, Co2+, Ni2+ and Cu2+) have been determined potentiometrically in 0.1M KCl and 10% (by volume) ethanol–water mixture. At constant temperature, the stability constants of the formed complexes increase in the order of Mn2+<Co2+<Ni2+<Cu2+. The effect of temperature was studied at 298, 308 and 318K and the corresponding thermodynamic parameters (∆G, ∆H and ∆S) were derived and discussed. The dissociation process is non-spontaneous, endothermic and entropically unfavorable. The formation of the metal complexes has been found to be spontaneous, endothermic and entropically favorable. The predicted pKa obtained by docking measurements for moxifloxacin (H2L) are in agreement with experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.