Abstract
The chiral separation of hydroxychloroquine, an antimalarial drug with one chiral center, has been predicted using molecular docking and was proven using the HPLC method. Docking utilized the PM3 semi-empirical method with specific grid coordinates (X = 19.977, Y = 20.069, and Z = 25.901) and a grid size of (X = 20, Y = 20, and Z = 60), employing a grid spacing of 1,000 Å, an exhaustiveness value of 8, and num_modes of 10. The analysis revealed the enhanced stability of R-hydroxychloroquine within the tris amylose complex, resulting in slower retention and elution rates compared to S-hydroxychloroquine. The HPLC experimental validation demonstrates resolution (Rs = 2.23), successfully achieved by employing amylose tris-based chiral columns. The mobile phase composition employed in this study consisted of acetonitrile:aquabidest: dimethylamine (47:52:1, v/v). Detection was performed at 343 nm, and the optimized HPLC method successfully quantitatively determined hydroxychloroquine in a liquid pharmaceutical sample with a percentage recovery of 98.47%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.