Abstract

The binding properties of chrysin with serum albumin (SA) were investigated under physiological conditions by calorimetry, circular dichroism (CD) spectroscopy, and molecular modeling. Based on the thermodynamic data, molar reaction enthalpy, reaction order (n) and the rate constant (k) were calculated. The results of CD spectroscopy showed that chrysin could bind to SA and the conformation of SA did not have any high-ordered structural change. Computational mapping revealed chrysin binding to the subdomain IB in SA. The chrysin-serum albumin complex was stabilized by hydrophobic force and hydrogen bonding and the reaction was a spontaneous process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call