Abstract

Human estrogen-related receptor γ (hERRγ) is a key protein involved in various endocrines and metabolic signaling. Numerous environmental endocrine-disrupting chemicals (EDCs) can impact related physiological activities through receptor signaling pathways. Focused on hERRγ with 4-isopropylphenol, bisphenol-F (BPF), and BP(2,2)(Un) complexes, we executed molecular docking and multiple molecular dynamics (MD) simulations along with molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) and solvation interaction energy (SIE) calculation to study the detailed dynamical structural characteristics and interactions between them. Molecular docking showed that hydrogen bonds and hydrophobic interactions were the prime interactions to keep the stability of BPF-hERRγ and hERRγ-BP(2,2)(Un) complexes. Through MD simulations, we observed that all complexes reach equilibrium during the initial 50ns of simulation, but these three EDCs lead to local structure changes in hERRγ. Energy results further identified key residues L268, V313, L345, and F435 around the binding pockets through CH-π, π-π, and hydrogen bonds interactions play an important stabilizing role in the recognition with EDCs. And most noticeable of all, hydrophobic methoxide groups in BP(2,2)(Un) is useful for decreasing the binding ability between EDCs and hERRγ. These results may contribute to evaluate latent diseases associated with EDCs exposure at the micro level and find potential substitutes. Autodock4.2 was used to conduct the molecular docking, sietraj program was performed to calculate the energy, and VMD software was used to visualize the structure. Amber18 was conducted to perform the MD simulation and other analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call