Abstract
Automated docking allowing a "protein-based" alignment was performed on a set of indole inhibitors of the GIIA secreted phospholipase A(2) (GIIA sPLA(2)). A correlation between the binding scores and the experimental inhibitory activity was observed (r(2) = 0.666, N = 34). All the indole inhibitors were docked in the active site of the GIIA sPLA(2) enzyme, and the best score docking pose of each inhibitor was used for the "protein-based" alignment of the compounds. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was then established using the comparative molecular field analysis (CoMFA) method. The set of 34 indole inhibitors was divided into two subsets: the training set, composed of 26 compounds, and the test set, consisting of eight compounds. The robustness and the predictive ability of the generated CoMFA model were examined by using the test set. A good correlation (r(2) = 0.997) between predicted and experimental inhibitory activity data allows the validation of the CoMFA model. Finally, the generated CoMFA model was used for the design and evaluation of new compounds. The new designed compounds exert improved predicted inhibitory activity and may be a target for the synthesis of new GIIA sPLA(2) indole inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Chemical Information and Modeling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.