Abstract

It is of interest to evaluate the secondary metabolites using high performance thin layer chromatography (HPTLC) finger printing and Gas chromatography-Mass spectroscopy (GC-MS) in S. herbaceaextract. The powdered plant material extracted using different solvents were used for the qualitative analysis of alkaloids, flavonoids, terpenoids and saponins followed by HPTLC finger printing and GC-MS analysis. The components identified in the GC-MS were docked with estrogen receptor (ER) to identify the binding specificity of isolated compounds. The ethyl acetate extract of S. herbaceashowed the presence of high number of secondary metabolites when compared to other solvent system. The qualitative analysis of the plant material also showed the presence of carbohydrates, protein, amino acid, phenol, flavonoids, terpenoids, glycosides, saponins and steroids. The HPTLC finger printing analysis revealed the existence of alkaloid, flavonoid, terpenoid and saponin compounds and GC-MS. GC-MS was performed to identify the phytocomponents constituents in the extract. 8 phytocompounds were identified to analyse binding with ER. The binding affinity score (-6.8 kcal/mol) and interacting ER residues (28) the phyto compound di-n-octyl phthalate showed best docking score with ER α than the standard drugs lasofoxifene, and 4-hydroxytamoxifen. The binding affinity and number of interacting ER residues was -6.9 kcal/mol; 10 and -6.2; 11, respectively. The results identified the presence of ER antagonist in S. herbaceaand warrants further investigation to explore for treating ER regulated diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.