Abstract

Green algae in corticolous biofilms are simple coccoid cells or filamentous thalli with strikingly low morphological diversity. Consequently, microscopic identification of these organisms is difficult, and often possible only to higher taxonomic units. We investigated the taxonomic and phylogenetic composition of green microalgae isolated from biofilms growing on the bark of Quercus pubescens and Pinus nigra. The study was based on 122 partial sequences of the plastid-encoded rbcL gene. In total, 29 operational taxonomic units (OTUs), differing in their rbcL sequences, were encountered. Members of the Trebouxiophyceae formed 97.5% of the isolates; Streptophyta made up 2.5%. The most frequently occurring OTUs were in the genera Coccomyxa, Parachloroidium and Stichococcus. Within the Watanabea clade, we have probably discovered an as-yet undescribed generic lineage with chlorelloid morphology. OTUs belonging to the recently described trebouxiophycean genera Kalinella, Leptochlorella and Xylochloris were also encountered, which indicates that these genera are probably widely distributed in subaerial microhabitats, such as tree bark. The samples taken from oak trees were more diverse in their OTU composition than those taken from pine trees, but the average phylogenetic distances of OTUs in samples did not differ between the host tree taxa. Host tree species had a stronger effect on the community structure of algae than the sampling locality. This indicates that habitat filtering is important for the distribution of individual microalgal phylogenetic taxa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call