Abstract

Gap junctions are among the most widely distributed cell structures involved in cell-to-cell communication. Recently completed genome sequencing projects including species from all major phyla have demonstrated the existence of three distinct gene families, the connexins, pannexins, and innexins, as molecular building blocks of gap junctional communication. In the present study, the authors have addressed the molecular complexity of gap junction gene expression in the zebrafish retina, a remarkably complex sensory organ built by diverse neuronal subtypes. Using a combination of cDNA library and genomic DNA library screening and/or RACE technology, the authors have cloned, in addition to the four previously reported connexins, seven novel connexins and four pannexin transcripts resembling two pannexin genes. This result demonstrates the presence of two distinct gap junction type gene families and indicates a remarkable molecular and functional diversity of gap junction-mediated coupling in the fish retina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.