Abstract

Immunization of human volunteers with a single dose of pneumococcal surface protein A (PspA) stimulates broad cross-reactive Abs to heterologous PspA molecules that, when transferred, protect mice from fatal infection with Streptococcus pneumoniae. In this study, we report the molecular characterization of 36 mouse mAbs generated against the extracellular domain of PspA (PspA(3-286)) from strain R36A. Abs to PspA(3-286) were encoded by diverse V(H) and V(kappa) families/genes. The H chain CDR3 and L chain CDR3 lengths were 3-13 (7.8 +/- 0.5) and 8-9 (8.7 +/- 0.2) codons, respectively. Unexpectedly, seven hybridomas expressed H chains that lack D(H) gene-derived amino acids. Nontemplate-encoded addition(s) were observed in the H chain expressed in six of these seven hybridomas; Palindromic addition(s) were absent. Absence of D(H) gene-derived amino acids did not prevent anti-PspA(3-286) mAbs from attaining average relative avidity. Avidity maturation occurred during primary IgG anti-PspA(3-286) polyclonal Ab response in PspA(3-286)- and R36A-immunized mice. Compared with PspA(3-286)-immunized mice, the relative avidity of the primary polyclonal IgG Abs was higher in R36A immunized mice on days 72, 86, and 100. Two pairs of clonally related hybridomas were observed. D(H) genes expressed in the majority (75.9%) of the hybridomas used reading frame 3. Analysis of replacement/silent mutation ratio in the CDR and framework regions provided evidence for Ag-driven selection in 11 mAbs. Based on epitope localization experiments, the mAbs were classified into 12 independent groups. ELISA additivity assay indicated that members within a group recognized topographically related epitopes. This study provides molecular insights into the biology of D(H)-less Abs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.