Abstract
As a model for orientational excitation of molecular arrays, we examine the excitation behavior and energy flow patterns in a model system. The model is simply a chain of classical point dipoles with fixed mass center, rotating in a plane containing the intermolecular axis, and interacting by the classical dipole potential. At low energies, the dispersion relation is quite different from that for a phonon system, showing a flat frequency maximum at k = 0. Correlation function analysis shows a significant transition from the low-energy regime in which the local dipole motion is predominantly oscillatory (with periodic correlation functions and Fourier components that maximize at a well-defined oscillation frequency), to a high-energy situation in which a Rayleigh peak occurs in the k = 0 Fourier component, and finite frequency response occurs only for higher wave vector. Physically, this transition occurs for thermal energy roughly equal to the typical magnitude of the local dipolar interaction. Thus for e...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.