Abstract

To effectively control the spread of new infectious diseases, there is a need for highly sensitive diagnostic methods to detect viral nucleic acids rapidly. This study outlines a universal and simple detection strategy that uses magnetic nanoparticles (MNPs) and a novel MagR-MazE fusion protein for molecular diagnostics to facilitate sensitive detection. This study has engineered a novel MNP conjugate that can be generated easily, without using many chemical reagents. The technique is a nucleic acid detection method, using MagR-MazE fusion protein-conjugated MNPs, where the results can be visualized with the naked eye, regardless of the oligonucleotide sequences of the target in the lateral flow assay. This method could sensitively detect polymerase chain reaction (PCR) products of 16S ribosomal RNA (rRNA) and the 2019-nCoV-N-positive control gene in 5 min. It shows a low limit of detection (LoD) of 0.013 ng/μL for dsDNA. It is simpler and more rapid, sensitive, and versatile than other techniques, making it suitable for point-of-care testing. The proposed detection system and MNP conjugation strategy using a fusion protein can be widely applied to various fields requiring rapid on-site diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.