Abstract

Drug-resistant tuberculosis is a global health problem that hinders the progress of tuberculosis eradication programs. Accurate and early detection of drug-resistant tuberculosis is essential for effective patient care, for preventing tuberculosis spread, and for limiting the development of drug-resistant strains. Culture-based drug susceptibility tests are the gold standard method for the detection of drug-resistant tuberculosis, but they are time-consuming and technically challenging, especially in low- and middle-income countries. Nowadays, different nucleic acid-based assays that detect gene mutations associated with resistance to drugs used to treat tuberculosis are available. These tests vary in type and number of targets and in sensitivity and specificity. In this review, we will describe the available molecular tests for drug-resistant tuberculosis detection and discuss their advantages and limitations.

Highlights

  • Drug resistance is a major challenge for tuberculosis (TB) treatment and eradication

  • Its higher Mycobacterium tuberculosis (MTB) detection sensitivity (16 bacilli/ml compared with 131 bacilli/ml for the current Xpert MTB/RIF cartridge) facilitates MTB screening in specimens with low numbers of bacilli, such as sputum samples from children and from patients co-infected by HIV, and in difficult-to-diagnose cases, such as smear-negative pulmonary and extra-pulmonary TB

  • The large-scale application of sequencing, especially in middle- and low-income countries is still difficult for the following reasons: (i) robust software and database tools need to be developed for the full exploitation of this technology in this specialized area of medicine; (ii) specialized personnel and bioinformatics facilities are required for the experiments, data acquisition and data analysis; (iii) the high cost of Next Generation Sequencing (NGS) platforms; (iv) need to determine whether new mutations confer anti-TB drug resistance; and (v) high amounts of high quality DNA are required for sequencing (Phelan et al, 2016; Dheda et al, 2017; Zignol et al, 2018)

Read more

Summary

Introduction

Drug resistance is a major challenge for tuberculosis (TB) treatment and eradication. The Nipro NTM+MDRTB strips show high specificity (between 97 and 100%) for INH and RIF resistance screening in cultured isolates and clinical (sputum) samples, but sensitivity varies between studies (from 50 to 95%) (Mitarai et al, 2012; Ruesch-Gerdes and Ismail, 2015; Nathavitharana et al, 2016).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.