Abstract

BackgroundPrimary distal renal tubular acidosis (dRTA) caused by mutations in the genes that codify for the H + −ATPase pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation. Up to now, large cohorts of dRTA Tunisian patients have not been analyzed, and molecular defects may differ from those described in other ethnicities. We aim to identify molecular defects present in the ATP6V1B1, ATP6V0A4 and SLC4A1 genes in a Tunisian cohort, according to the following algorithm: first, ATP6V1B1 gene analysis in dRTA patients with sensorineural hearing loss (SNHL) or unknown hearing status. Afterwards, ATP6V0A4 gene study in dRTA patients with normal hearing, and in those without any structural mutation in the ATP6V1B1 gene despite presenting SNHL. Finally, analysis of the SLC4A1 gene in those patients with a negative result for the previous studies.Methods25 children (19 boys) with dRTA from 20 families of Tunisian origin were studied. DNAs were extracted by the standard phenol/chloroform method. Molecular analysis was performed by PCR amplification and direct sequencing.ResultsIn the index cases, ATP6V1B1 gene screening resulted in a mutation detection rate of 81.25%, which increased up to 95% after ATP6V0A4 gene analysis. Three ATP6V1B1 mutations were observed: one frameshift mutation (c.1155dupC; p.Ile386fs), in exon 12; a G to C single nucleotide substitution, on the acceptor splicing site (c.175-1G > C; p.?) in intron 2, and one novel missense mutation (c.1102G > A; p.Glu368Lys), in exon 11. We also report four mutations in the ATP6V0A4 gene: one single nucleotide deletion in exon 13 (c.1221delG; p.Met408Cysfs*10); the nonsense c.16C > T; p.Arg6*, in exon 3; and the missense changes c.1739 T > C; p.Met580Thr, in exon 17 and c.2035G > T; p.Asp679Tyr, in exon 19.ConclusionMolecular diagnosis of ATP6V1B1 and ATP6V0A4 genes was performed in a large Tunisian cohort with dRTA. We identified three different ATP6V1B1 and four different ATP6V0A4 mutations in 25 Tunisian children. One of them, c.1102G > A; p.Glu368Lys in the ATP6V1B1 gene, had not previously been described. Among deaf since childhood patients, 75% had the ATP6V1B1 gene c.1155dupC mutation in homozygosis. Based on the results, we propose a new diagnostic strategy to facilitate the genetic testing in North Africans with dRTA and SNHL.

Highlights

  • Primary distal renal tubular acidosis caused by mutations in the genes that codify for the H + −adenosine triphosphatase (ATPase) pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation

  • In 1999, Karet et al demonstrated that, in families with classic distal renal tubular acidosis (dRTA) and early sensorineural hearing loss (SNHL), which became clinically evident from birth to late childhood, the disease was caused by mutations in the ATP6V1B1 gene, encoding the B subunit of the H + ATPase pump [7]

  • In order to establish the genetic diagnosis of primary dRTA in Tunisia, this study aimed to identify the molecular defects that occur in ATP6V1B1, ATP6V0A4 and SLC4A1 genes using a proposed algorithm

Read more

Summary

Introduction

Primary distal renal tubular acidosis (dRTA) caused by mutations in the genes that codify for the H + −ATPase pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation. We aim to identify molecular defects present in the ATP6V1B1, ATP6V0A4 and SLC4A1 genes in a Tunisian cohort, according to the following algorithm: first, ATP6V1B1 gene analysis in dRTA patients with sensorineural hearing loss (SNHL) or unknown hearing status. Afterwards, ATP6V0A4 gene study in dRTA patients with normal hearing, and in those without any structural mutation in the ATP6V1B1 gene despite presenting SNHL. In 1999, Karet et al demonstrated that, in families with classic dRTA and early sensorineural hearing loss (SNHL), which became clinically evident from birth to late childhood, the disease was caused by mutations in the ATP6V1B1 gene, encoding the B subunit of the H + ATPase pump [7]. In 2000, Smith et al found that some families with dRTA and normal audiometry presented with mutations in the ATP6V0A4 gene, which encodes for the A4 subunit of the H + ATPase pump [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call