Abstract

Thoracic insufficiency syndromes are a genetically and phenotypically heterogeneous group of disorders characterized by congenital abnormalities or progressive deformation of the chest wall and/or vertebrae that result in restrictive lung disease and compromised respiratory capacity. We performed whole exome sequencing on a cohort of 42 children with thoracic insufficiency to elucidate the underlying molecular etiologies of syndromic and non-syndromic thoracic insufficiency and predict extra-skeletal manifestations and disease progression. Molecular diagnosis was established in 24/42 probands (57%), with 18/24 (75%) probands having definitive diagnoses as defined by laboratory and clinical criteria and 6/24 (25%) probands having strong candidate genes. Gene identified in cohort patients most commonly encoded components of the primary cilium, connective tissue, and extracellular matrix. A novel association between KIF7 and USP9X variants and thoracic insufficiency was identified. We report and expand the genetic and phenotypic spectrum of a cohort of children with thoracic insufficiency, reinforce the prevalence of extra-skeletal manifestations in thoracic insufficiency syndromes, and expand the phenotype of KIF7 and USP9X-related disease to include thoracic insufficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.