Abstract

Babesiosis is a tick transmitted disease, infecting a wide variety of wild and domestic animals, as well as humans. This study was designed to investigate molecular diagnosis and clinic-hemato-biochemical and oxidant/antioxidant status in dogs of Mizoram, India. A total 1200 dogs screened for babesiosis during 2017-18 and 53 dogs suspected for babesiosis by clinical signs and were confirmed by molecular diagnosis. Clinical signs were recorded; also blood samples were taken to investigate hematologic changes, serum biochemical variations and oxidative stress biomarkers. The overall incidence of babesiosis in dogs of Aizawl, Mizoram, India during the study period recorded was 1.25% (15/1200) and 28.3% cases confirmed from 53 suspected dogs (15/53). The most commonly observed clinical signs were fever, emaciation, depression and icterus and lymphadenopathy. Significant reduction in PCV, HB, RBCs, MCHC, total protein, and albumin along with significant increase in MCV, WBCs, monocytes and BUN were the most consistent hemato-biochemical changes. Oxidant/antioxidant assessment showed significant reduction in superoxide dismutase, catalase and total anti-oxidant (TAC) along with significant increase in lipid peroxidase (LPO) activities. The findings of this study demonstrated that the main causative agent of babesiosis in dogs in Mizoram Province is Babesia gibsoni which caused significant alteration of hemato-biochemical and oxidant-antioxidant status in dogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.