Abstract

Lyotropic anions with low free energy of hydration show both high permeability and tight binding in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel pore. However, the molecular bases of anion selectivity and anion binding within the CFTR pore are not well defined and the relationship between binding and selectivity is unclear. We have studied the effects of point mutations throughout the sixth transmembrane (TM6) region of CFTR on channel block by, and permeability of, the highly lyotropic Au(CN)(2)(-) anion, using patch clamp recording from transiently transfected baby hamster kidney cells. Channel block by 100 microM Au(CN)(2)(-), a measure of intrapore anion binding affinity, was significantly weakened in the CFTR mutants K335A, F337S, T338A and I344A, significantly strengthened in S341A and R352Q and unaltered in K329A. Relative Au(CN)(2)(-) permeability was significantly increased in T338A and S341A, significantly decreased in F337S and unaffected in all other mutants studied. These results are used to define a model of the pore containing multiple anion binding sites but a more localised anion selectivity region. The central part of TM6 (F337-S341) appears to be the main determinant of both anion binding and anion selectivity. However, comparison of the effects of individual mutations on binding and selectivity suggest that these two aspects of the permeation mechanism are not strongly interdependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.