Abstract

Elastin and elastin-related peptides have great potential in the biomaterial field, because of their peculiar mechanical properties and spontaneous self-assembling behavior. Depending on their sequences and under appropriate experimental conditions, they are able to self-assemble in different fiber morphologies, including amyloid-like fibers. In this work, we will review recent data on elastin peptides derived from exon 30-coded domain of human tropoelastin. This domain has been shown to be fundamental for the correct assembly of elastin. However, the N-terminal region forms amyloid-like fibers, while the C-terminal fragment forms elastin-like fibers. A rationale for the varied aggregation pattern has been sought in the molecular structure of the peptides. Minimal differences in the sequences, adopting alternative conformations, are shown to be responsible for the observed data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.