Abstract
Amyloid fibrils are polymers composed of proteins in beta-sheet conformation, which are found in at least 20 diseases for which no cure is available. These diseases include Alzheimer's disease and spongiform encephalopathies, in which the amyloid beta-peptide and the prion protein (PrP), respectively, form amyloid. All fibrils are morphologically very similar although the native structures of the corresponding proteins are widely different. Proteins that are not known to form fibrils in vivo can do so under conditions where unfolding intermediates are well populated. This indicates that fibril formation can arise from most, if not all, polypeptide chains under certain conditions, and that nature has found ways to avoid fibrillogenic protein conformations. In support of this, it was recently found that unpaired beta-strands present in native proteins are prevented from forming intermolecular beta-sheets, by strategic placement of prolines and charged residues for example. Structural studies of the lung surfactant-associated protein C (SP-C) have revealed determinants for amyloid fibril formation. The poly-valine alpha-helix of SP-C spontaneously converts to beta-sheet aggregates in vitro and SP-C amyloid fibrils are found in pulmonary alveolar proteinosis. A beta, PrP, and SP-C harbour an alpha-helix which is strongly predicted to form a beta-strand, and in all cases investigated so far such alpha-helix/beta-sheet discordance correlates with the ability to form beta-sheet aggregates and fibrils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.