Abstract

Several species of the spotted fever group rickettsiae have been identified as emerging pathogens throughout the world, including in Africa. In this study, 197 Hyalomma ticks (Ixodida: Ixodidae) collected from 51 camels (Camelus dromedarius) in Kano, northern Nigeria, were screened by amplification and sequencing of the citrate synthase (gltA), outer membrane protein A (ompA) and 17-kDa antigen gene fragments. Rickettsia sp. gltA fragments were detected in 43.3% (42/97) of the tick pools tested. Rickettsial ompA gene fragments (189 bp and 630 bp) were detected in 64.3% (n = 27) and 23.8% (n = 10) of the gltA-positive tick pools by real-time and conventional polymerase chain reaction (PCR), respectively. The amplicons were 99-100% identical to Rickettsia aeschlimannii TR/Orkun-H and R. aeschlimannii strain EgyRickHimp-El-Arish in GenBank. Furthermore, 17-kDa antigen gene fragments of 214 bp and 265 bp were detected in 59.5% (n = 25) and 38.1% (n = 16), respectively, of tick pools, and sequences were identical to one another and 99-100% identical to those of the R. aeschlimannii strain Ibadan A1 in GenBank. None of the Hyalomma impressum ticks collected were positive for Rickettsia sp. DNA. Rickettsia sp. gltA fragments (133 bp) were detected in 18.8% of camel blood samples, but all samples were negative for the other genes targeted. This is the first report to describe the molecular detection of R. aeschlimannii in Hyalomma spp. ticks from camels in Nigeria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.