Abstract

Background and Objective: The mucoviscosity associated gene A (magA) in the hypermucoviscous variants of K. pneumoniae is reported to be associated with invasive infections and considered a virulence factor. We sought to analyze the magA genes in K. pneumoniae isolates in the clinical specimen collected from Bangladesh. Methods: We established a multicenter cohort of patients with Klebsiella infection hospitalized at 05 different hospitals between September 2016 and April 2017. We collected 313 K. pneumoniae isolates from patients who consented to participate in the study. The isolates were evaluated for harboring the magA genes using a single-tube multiplexed polymerase chain reaction. The magA genes were analyzed by PCR-RFLP technique using two enzymes, namely PciI and SmaI. Antibiogram assay using 12 commercially available antibiotic discs was performed on all the isolates. Results: The presence of K. pneumoniae specific gene (ureD) was confirmed in all the isolates. The percentage of isolates harboring the magA gene was 7.34%(23 isolates), the majority of which was collected from the patients admitted in intensive care units (16 isolates, 69.6%), and infectious diseases wards (5 isolates, 21.7%). PCR-RFLP analysis revealed that for 7 out of 23 isolates, where Sma1 could not cleave the magA gene. All the isolates showed resistance to ampicillin, carbenicillin cefradine, chloramphenicol, erythromycin, kanamycin, and sulphamethoxazole, though the extent was varying. However, imipenem showed 100% sensitivity to all the tested isolates. Conclusion: This study demonstrates the presence of the magA gene in multidrug-resistant clinical isolates of K. pneumoniae collected from Bangladesh.

Highlights

  • Klebsiella pneumoniae is an encapsulated gram-negative bacterium of the Enterobacteriaceae family [1]

  • 313 isolates of K. pneumoniae were obtained from the intensive care units (ICU), internal medicine and infectious diseases wards of the five hospitals (Table 3)

  • This study describes a PCR-RFLP based technique for precise detection and analysis of mucoviscosity associated gene A (magA) gene in K. pneumoniae isolates collected from clinical specimens

Read more

Summary

Introduction

Klebsiella pneumoniae is an encapsulated gram-negative bacterium of the Enterobacteriaceae family [1]. As a component of the human gut microbiota, this bacterium is usually harmless to the body. K. pneumoniae are intrinsically resistant to ampicillin They ubiquitously possess an inducible chromosomally encoded ß-lactamase (cephalosporinase), making them resistant. Clinical reports indicate that they are increasingly becoming resistant toward tigecycline, colistins, and polymyxin antibiotics, turning out to be a pan drug-resistant bacteria, or in other words, a ‘superbug’ [5 - 8]. The mucoviscosity associated gene A (magA) in the hypermucoviscous variants of K. pneumoniae is reported to be associated with invasive infections and considered a virulence factor. We sought to analyze the magA genes in K. pneumoniae isolates in the clinical specimen collected from Bangladesh

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.