Abstract

With the help of computational chemistry tools, three non-fullerene acceptors, which are 2-methylene-malononitrile (M-1), 2-(3-methyl-5-methylene-2-thioxothiazolidin-4-ylidene) malononitrile (M-2) and 1-methyl-5-methylene-2,6-dioxo-1,2,5,6-tetrahydropyridine-3-carbonitrile (M-3), are designed with naphthalene diimide (NDI) central unit. Their different photovoltaic and optoelectronic properties like absorption spectrum, electrons density, solubility strength, reorganization energies, % ETC from donor to acceptor part, excitation energies, oscillating strength, morphology and crystallinity of device for constructing the thin film bulk hetro junction devices were computed at the WB97XD/6-31 G (d, p) level of density functional theory (DFT). Expected open circuit voltages of designed molecules are high as 4.05 eV to 4.49 eV, which are significantly larger than that of the previously reported 3-methyl-5-methylene-2-thioxothiazolidin-4-one (R) with the value of 3.60 eV at the zero current level. Charge carrier mobilities of designed molecules are high due to having low re-organization energies varying from 0.0163 eV to 0.0280 eV for electron and 0.0160 eV to 0.0190 eV for hole, strong absorption properties between the 420 nm to 550 nm in chloroform and 400 nm to 540 nm in gas phase conditions, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.