Abstract

AbstractEnd‐capped modification is a convenient strategy to enhance the photovoltaic and electronic properties of fullerene‐free acceptor materials. In this report, five novel star‐shaped three‐dimensional acceptor molecules FH1–FH5 are designed by end‐capped modifications of recently synthesized star‐shaped Tr (Hex)6‐3BR molecule. The enhancement in the photovoltaic, electronic, and photophysical properties of designed molecules is examined with the aid of density functional theory (DFT) and time‐dependent DFT (TDDFT). The MPW1PW91 functional in conjunction with 6‐31G(d,p) basis set of DFT/TDDFT is employed in order to compute various key parameters including frontier molecular orbitals analysis, absorption maxima, and binding energy along with transition density matrix, open‐circuit voltage, excitation energy, charge mobilities (electron and hole reorganizational energies), density of states, charge transfer with respect to HOMOPTB7‐Th–LUMOacceptor, and dipole moment. Red shifting in absorption spectra of acceptor materials is the most important reason for increasing efficiency of organic solar cells. A red shift in absorption spectra of all designed molecules is noted with low excitation energy. Designed molecules FH1–FH5 exhibit narrow energy gap with high electron mobility as compared with Tr (Hex)6‐3BR molecule. Among all designed molecules, FH4 is proved to be the best candidate for fullerene free organic solar cells because of narrow band gap, high charge mobility, high dipole moment, low excitation, and binding energy along with a red shift in absorption spectrum. Moreover, all designed molecules offer high current charge density as compared with Tr (Hex)6‐3BR. These results indicate that all star‐shaped conceptual molecules (FH1–FH5) are ideal aspirants for construction of future organic solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.