Abstract

Luminescent materials that can spontaneously assemble into highly ordered networks are essential to improve the quality of thin films in stacked device architectures and enhance the performances of solution-processed organic light emitting devices (OLEDs). Herein, we report two pyridine-decorated thermally activated delayed fluorescence (TADF) emitters, 3PyCzBP and 4PyCzBP. 4PyCzBP shows robust two-component gel formation in the presence of either tartaric acid or succinic acid along with significant emission enhancement. Morphology studies reveal that these gels consist of homogeneous nanofibers assembled in hierarchical supramolecular networks. Transient photoluminescence spectra confirm that the gels emit via a TADF mechanism, making them the first examples of TADF gels. These nanofibers are promising candidates as self-assembled emitting nanofibers in thin films in solution-processed OLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.