Abstract

In spite of the wide availability of various near-infrared (NIR) fluorophores as labeling reagents, there are few functional NIR fluorescent probes for which change in the absorption and/or fluorescence spectra upon specific reaction with biomolecules is seen. The widely used photoinduced electron-transfer mechanism is unsuitable for NIR fluorophores, such as tricarbocyanines, because their long excitation wavelength results in a small singlet excitation energy. We have reported the unique spectral properties of amine-substituted tricarbocyanines, which were utilized to develop two design strategies. One approach was based on control of the absorption wavelength by using the difference in electron-donating ability before and after a specific reaction with a biomolecule, and the other approach was based on control of the fluorescence intensity by modulating the Förster resonance energy-transfer efficiency through a change in the overlap integral that arises from the change in absorption under acidic conditions. These strategies were validated by obtaining tricarbocyanine-based ratiometric NIR fluorescent probes for esterase and for pH level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.