Abstract

Animal toxins targeting voltage-gated sodium channels (VGSCs) have been considered as valuable tools for studying pharmacological functions of VGSCs. Recently we have reported that Drosotoxin (DrTx), an evolution-guided chimeric peptide, exhibits highly selective blocking activity to tetrodotoxin-resistant (TTX-R) Na+ channels in rat dorsal root ganglion (DRG) neurons. In this study, we constructed five new analogues of DrTx designed by altering amino-terminal sequences of DrTx, two of which have significant inhibitory effects on both TTX-R and tetrodotoxin-sensitive (TTX-S) Na+ channels. Structure–activity relationship studies allow us to recognize key functional roles of a positive charge at site seven and a negative charge at site eight in evolving new blocking activity to TTX-S sodium channels. This work will enhance our understanding of the molecular determinants of toxins affecting VGSCs and aid the rational design of subtype-specific blockers of the channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.