Abstract

Monitoring the tumor oxygen level when implementing photodynamic therapy (PDT) on malignant cancer has vital significance but remains challenging yet. Herein, by structurally manipulating a 2,4-dimethylpyrrole-engineered asymmetric BODIPY scaffold with different kinds, numbers, and positions of halogen atoms, we rationally designed several monochromophore-based bifunctional photosensitizers, named BDPs (BDP-I, BDP-II, and BDP-III), with self-sensitized photooxidation characteristics for accurate oxygen reporting and photodynamic tumor ablation. We show that different ways of halogen regulation allow available tuning of BDPs' oxygen-dependent ratiometric fluorescence turn-ons upon light irradiation as well as type-II PDT efficiencies before and after self-sensitized photooxidation. Encouragingly, measuring the specific ratiometric signals of the most promising BDP-II enabled the direct observation of initial oxygen concentration in both living 4T1 cells and a tumor-bearing mice model, affording an alternative way for evaluating oxygen supplementation strategies. Meanwhile, the "always on" PDT effect of BDP-II ensured efficient tumor ablation via apoptosis. Our research was thus believed to be of instructive significance for future application of oxygen-related auxiliary strategies and the design of unimolecular multifunctional PDT agents for cancer precision therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call