Abstract

The discovery of materials that combine selectively, controllably, and reversibly with CO2 is a key challenge for realizing practical carbon capture from flue gas and other point sources. We report the design of ionic liquids (ILs) with properties tailored to this CO2 separation problem. Atomistic simulations predict that suitably substituted aprotic heterocyclic anions, or “AHAs,” bind CO2 with energies that can be controlled over a wide range suitable to gas separations. Further, unlike all previously known CO2-binding ILs, the AHA IL viscosity is predicted to be insensitive to CO2. Spectroscopic, temperature-dependent absorption, rheological, and calorimetric measurements on trihexyl(tetradecyl)-phosphonium 2-cyanopyrrolide ([P66614][2-CNpyr]) show CO2 uptakes close to prediction as well as insignificant changes in viscosity in the presence of CO2. A pyrazolide-based AHA IL behaves qualitatively similarly but with weaker binding energy. The results demonstrate the intrinsic design advantages of ILs as a platform for CO2 separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call