Abstract
Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔEL-L), open-circuit voltage (Voc), fill factor (FF), reorganization energy (λ), exciton binding energy (Eb), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔEL-L, large Voc, and FF values and low Eb when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PC61BM, bisPC61BM, and PC71BM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs. All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.