Abstract

AbstractElectrolytes with high stability against both Li anode and high‐voltage cathode are critical for high‐energy and long‐cycling lithium metal batteries (LMBs). However, the free active solvents in common electrolytes are susceptible to decomposition at both Li anode and high‐voltage cathode. Although recently developed locally high‐concentration electrolytes (LHCEs) have largely restricted active solvents via Li+ coordination, the free molecules are still released upon the desolvation of Li+ at the surface of electrodes, causing continuous decomposition during long‐cycling processes. Here, a molecule competitive solvation electrolyte (MCE) is shown to stabilize high‐voltage LMBs by introducing a well‐designed and newly synthetic bipolar solvent molecule with one ion‐dissociative polar head and the other highly fluorinated nonpolar tail. The bipolar molecules competitively dissociate Li+ via weak coordination interactions, drastically reducing the ratio of active solvents in electrolytes and the detrimental decomposition at electrodes during the desolvation processes. Consequently, the MCE enables a 1.4‐Ah Li metal pouch cell with a stack energy density of 450 Wh kg−1 along with exceptional operation stability over 400 cycles (retention: 81%). Furthermore, the MCE also maintains the stable operation of a 2.5‐Ah Li‐S pouch cell with an excellent energy density of 417 Wh kg−1 for 70 cycles under practical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call