Abstract
Ivermectin is a powerful endectocide, which reduces the incidence of vector-borne diseases. Besides its strong insecticidal effect on mosquito vectors of the disease, ivermectin inhibits Plasmodium falciparum sporogonic and blood stage development and impairs Plasmodium berghei development inside hepatocytes, both in vitro and in vivo. Herein, we present the first report on structural modification of ivermectin to produce dual-action molecular hybrids with good structure-dependent in vitro activity against both the hepatic and erythrocytic stages of P. berghei and P. falciparum infection, suggesting inclusion of ivermectin antimalarial hybrids in malaria control strategies. The most active hybrid displayed over threefold and 10-fold higher in vitro activity than ivermectin against hepatic and blood stage infections, respectively. Although an overwhelming insecticidal effect against Anopheles stephensi mosquitoes in laboratory conditions was not noticed, in silico docking analysis supports allosteric binding to glutamate-gated chloride channels similar to ivermectin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.