Abstract

Modulating the surface chemistry of nanoparticles, often by grafting hydrophilic polymer brushes (e.g., polyethylene glycol) to prepare nanoformulations that can resist opsonization in a hematic environment and negotiate with the mucus barrier, is a popular strategy toward developing biocompatible and effective nano-drug delivery systems. However, there is a need for tools that can screen multiple surface ligands and cluster them based on both structural similarity and physicochemical attributes. Molecular descriptors offer numerical readouts based on molecular properties and provide a fertile ground for developing quick screening platforms. Thus, a study was conducted with 14 monomers/repeating blocks of polymeric chains, namely, oxazoline, acrylamide, vinylpyrrolidone, glycerol, acryloyl morpholine, dimethyl acrylamide, hydroxypropyl methacrylamide, hydroxyethyl methacrylamide, sialic acid, carboxybetaine acrylamide, carboxybetaine methacrylate, sulfobetaine methacrylate, methacryloyloxyethyl phosphorylcholine, and vinyl-pyridinio propanesulfonate, capable of imparting hydrophilicity to a surface when assembled as polymeric brushes. Employing free, Web-based, and user-friendly platforms, such as SwissADME and ChemMine tools, a series of molecular descriptors and Tanimoto coefficient of molecular pairs were determined, followed by hierarchical clustering analyses. Molecular pairs of oxazoline/dimethyl acrylamide, hydroxypropyl methacrylamide/hydroxyethyl methacrylamide, acrylamide/glycerol, carboxybetaine acrylamide/vinyl-pyridinio propanesulfonate, and sulfobetaine methacrylate/methacryloyloxyethyl phosphorylcholine were clustered together. Similarly, the molecular pair of hydroxypropyl methacrylamide/hydroxyethyl methacrylamide demonstrated a high Tanimoto coefficient of >0.9, whereas the pairs oxazoline/vinylpyrrolidone, acrylamide/dimethyl acrylamide, acryloyl morpholine/dimethyl acrylamide, acryloyl morpholine/hydroxypropyl methacrylamide, acryloyl morpholine/hydroxyethyl methacrylamide, carboxybetaine methacrylate/sulfobetaine methacrylate, and glycerol/hydroxypropyl methacrylamide had a Tanimoto coefficient of >0.8. The analyzed data not only demonstrated the ability of such in silico tools as a facile technique in clustering molecules of interest based on their structure and physicochemical characteristics but also provided vital information on their behavior within biological systems, including the ability to engage an array of possible molecular targets when the monomers are self-assembled on nanoparticulate surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call