Abstract
Graph theory plays a vital role in modeling and designing any chemical structure or chemical network. Chemical graph theory helps in understanding the molecular structural properties of a molecular graph. The molecular graph consists of atoms called vertices and chemical bonds between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree-based additive topological indices, mainly the first and second Zagreb indexes, general Randić index, atom bond connectivity index, geometric arithmetic index, fourth atom bond connectivity index, and fifth geometric arithmetic index of carbon graphite denoted by CG(m, n) for t levels, and crystal structure cubic carbon denoted for n levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.