Abstract

BackgroundThe T cell-inflamed tumor microenvironment, characterized by CD8 T cells and type I/II interferon transcripts, is an important cancer immunotherapy biomarker. Tumor mutational burden (TMB) may also dictate response, and some oncogenes (i.e., WNT/β-catenin) are known to mediate immunosuppression.MethodsWe performed an integrated multi-omic analysis of human cancer including 11,607 tumors across multiple databases and patients treated with anti-PD1. After adjusting for TMB, we correlated the T cell-inflamed gene expression signature with somatic mutations, transcriptional programs, and relevant proteome for different immune phenotypes, by tumor type and across cancers.ResultsStrong correlations were noted between mutations in oncogenes and tumor suppressor genes and non-T cell-inflamed tumors with examples including IDH1 and GNAQ as well as less well-known genes including KDM6A, CD11c, and genes with unknown functions. Conversely, we observe genes associating with the T cell-inflamed phenotype including VHL and PBRM1. Analyzing gene expression patterns, we identify oncogenic mediators of immune exclusion across cancer types (HIF1A and MYC) as well as novel examples in specific tumors such as sonic hedgehog signaling, hormone signaling and transcription factors. Using network analysis, somatic and transcriptomic events were integrated. In contrast to previous reports of individual tumor types such as melanoma, integrative pan-cancer analysis demonstrates that most non-T cell-inflamed tumors are influenced by multiple signaling pathways and that increasing numbers of co-activated pathways leads to more highly non-T cell-inflamed tumors. Validating these analyses, we observe highly consistent inverse relationships between pathway protein levels and the T cell-inflamed gene expression across cancers. Finally, we integrate available databases for drugs that might overcome or augment the identified mechanisms.ConclusionsThese results nominate molecular targets and drugs potentially available for further study and potential immediate translation into clinical trials for patients with cancer.

Highlights

  • The T cell-inflamed tumor microenvironment, characterized by CD8 T cells and type I/II interferon transcripts, is an important cancer immunotherapy biomarker

  • Using a model wherein the T cell-inflamed tumor microenvironment is considered as a biological approximation of immunotherapy treatment response, we investigated molecular patterns that associate with the presence or absence of this phenotype with the idea that they may lead to therapeutic opportunities

  • Datasets in this study Datasets used in this study include (Additional file 1: Table S1): (1) The Cancer Genome Atlas [14] (TCGA) (n = 9244) (somatic mutations, RNAseq gene expression, reverse phase protein array (RPPA) protein abundance, and clinical data), (2) International Cancer Genome Consortium [15] (ICGC) (n = 1161) (RNAseq gene expression), (3) Clinical Proteomic Tumor Analysis Consortium [16, 17] (CPTAC) (n = 870) (RNAseq gene expression), (4) 500 cancer patients diagnosed with metastatic cancers (MET500) [18, 19] (n = 259) (RNAseq gene expression), and (5) metastatic melanoma patient cohort treated with anti-programmed cell death protein 1 (PD1) [20, 21] (n = 73) (RNAseq gene expression and clinical data)

Read more

Summary

Introduction

The T cell-inflamed tumor microenvironment, characterized by CD8 T cells and type I/II interferon transcripts, is an important cancer immunotherapy biomarker. Immune profiling of tumor lysates from patients receiving cancer vaccines suggested a paradigm of two broad phenotypes characterized by the presence or absence of CD8+ effector tumor-infiltrating lymphocytes (TIL) and other mediators of an adaptive immune response [2]. These tumors have been described as T cell-inflamed and demonstrate a transcriptional profile driven by type I interferons (IFNs) as well as expression of many IFN-γ linked immunosuppressive mechanisms [3]. The T cell-inflamed phenotype may be leveraged to study factors promoting or limiting a productive anti-tumor immune response

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call