Abstract

We use a simple one-zone model of the thermal and chemical evolution of interstellar gas to study whether molecular hydrogen (H2) is ever an important coolant of the warm, diffuse interstellar medium (ISM). We demonstrate that at solar metallicity, H2 cooling is unimportant and the thermal evolution of the ISM is dominated by metal-line cooling. At metallicities below 0.1 Z⊙, however, metal-line cooling of low-density gas quickly becomes unimportant and H2 can become the dominant coolant, even though its abundance in the gas remains small. We investigate the conditions required in order for H2 to dominate, and show that it provides significant cooling only when the ratio of the interstellar radiation field strength to the gas density is small. Finally, we demonstrate that our results are insensitive to changes in the initial fractional ionization of the gas or to uncertainties in the nature of the dust present in the low-metallicity ISM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.