Abstract

Rhodium nanoparticles (NPs) immobilized on imidazolium-based supported ionic liquid phases (Rh@SILP) act as effective catalysts for the hydrogenation of biomass-derived furfuralacetone. The structure of ionic liquid-type (IL) molecular modifiers was systematically varied regarding spacer, side chain, and anion to assess the influence on the NP synthesis and their catalytic properties. Well-dispersed Rh NPs with diameters in the range of 0.6–2.0 nm were formed on all SILP materials, whereby the actual size was dependent significantly on the IL structure. The resulting variations in catalytic activity for hydrogenation of the C=O moiety in furfuralacetone allowed control of the product selectivity to obtain either the saturated alcohol or the ketone in high yield. Experiments conducted under batch and continuous flow conditions demonstrated that Rh NPs immobilized on SILPs with suitable IL structures are more active and much more stable than Rh@SiO2 catalyst synthesized on unmodified silica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.