Abstract

Polymeric nanopores show unique transport properties and have attracted a great deal of scientific interest as a test system to study ionic and molecular transport at the nanoscale. By means of all-atom molecular dynamics, we simulated the ion dynamics inside polymeric polyethylene terephthalate nanopores. For this purpose, we established a protocol to assemble atomic models of polymeric material into which we sculpted a nanopore model with the key features of experimental devices, namely a conical geometry and a negative surface charge density. Molecular dynamics simulations of ion currents through the pore show that the protonation state of the carboxyl group of exposed residues have a considerable effect on ion selectivity, by affecting ionic densities and electrostatic potentials inside the nanopores. The role of high concentrations of Ca2+ ions was investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.