Abstract

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.