Abstract

BackgroundMetazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta.ResultsThe genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct- bra and Ct-nkx2.1a in the hindgut.ConclusionsIdentification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that ‘gut gene’ networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.Electronic supplementary materialThe online version of this article (doi:10.1186/2041-9139-5-39) contains supplementary material, which is available to authorized users.

Highlights

  • Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions

  • This demonstrates that all five regulatory genes in the ‘kernel’ of the sea urchin endomesoderm gene regulatory network (GRN) are present in an annelid, which is consistent with previous records for subsets of these orthologs within Spiralia [50,55,56,57,67,68,69,70,71,72,73,74,75] and confirms their presence in all three superclades of the Bilateria

  • Within Spiralia, data from Capitella teleta provide the most comprehensive catalogue of comparable expression patterns for transcriptional regulators of the sea urchin endomesoderm ‘kernel’. Those patterns indicate that five core orthologs of the endomesoderm GRN are involved in regulating endoderm specification and midgut development in C. teleta

Read more

Summary

Introduction

Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. We utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta. In both protostome and deuterostome clades, sources of endoderm (stomach, intestine, glands) and mesoderm (connective tissue, coelom, somatic gonad, nephridia and most muscle) are commonly derived from a bipotential precursor cell or population of cells, called endomesoderm [1,2,3,4,5]. Despite the evolutionary implications of this, relatively few studies have examined the expression of endomesodermal network genes in taxa that are distantly related to the standard developmental model systems [4,12,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call