Abstract

Peptide beta-hairpin formation is facilitated by centrally positioned D-Pro-Xxx segments. The synthetic peptides Boc-Leu-Phe-Val-D-Pro-Ac(6)c-Leu-Phe-Val-OMe (1) and Boc-Leu-Phe-Val-D-Pro-Ac(8)c-Leu-Phe-Val-OMe (2) were synthesized in order to explore the role of bulky 1-aminocycloalkane-1-carboxylic acid residues (Ac(n)c, where n is the number of carbon atoms in the ring), at the i+2 position of the nucleating beta turn in peptide beta hairpins. Peptides 1 and 2 crystallize in the monoclinic space group P2(1) with two molecules in the asymmetric unit. The crystal structures of 1 and 2 provide conformational parameters for four peptide hairpin molecules. In all cases, the central segments adopts a type II' beta-turn conformation, and three of the four possible cross-strand hydrogen bonds are observed. Fraying of the hairpins at the termini is accompanied by the observation of NHpi interaction between the Leu(1)NH group and Phe(7) aromatic group. Cross strand stabilizing interactions between the facing residues Phe(2) and Phe(7) are suggested by the observed orientation of aromatic rings. Anomalous far-UV CD spectra observed in solution suggest that close proximity of the Phe rings is maintained even in isolated molecules. In both peptides 1 and 2, the asymmetric unit consists of approximately orthogonal hairpins, precluding the formation of a planar beta-sheet arrangement in the solid state. Solvent molecules, one dioxane and one water in 1, three water molecules in 2, mediate peptide association. A comparison of molecular conformation and packing motifs in available beta-hairpin structures permits delineation of common features. The crystal structures of beta-hairpin peptides provide a means of visualizing different modes of beta-sheet packing, which may be relevant in developing models for aggregates of polypeptides implicated in disease situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.