Abstract

Separation of water-soluble lignins from lignocellulosic biomass provides a new and still poorly exploited feedstock to increase the sustainability of biorefineries. We applied derivatization followed by a reductive cleavage (DFRC) method, 2D-HSQC-NMR, and 31PNMR after 31P-labeling, to investigate molecular composition in water-soluble lignins obtained by alkaline oxidation from three biomass materials for energy (miscanthus, giant reed and an industrially pre-treated giant reed). Chromatographic identification of lignin products cleaved by DFRC showed a large predominance of guaiacyl (G) units in all biomasses and a lesser abundance of syringyl (S) and p-coumaryl (P) monomers. Our S/G ratios disagree with those reported in literature by other lignin separation methods. Carboxyl functions (ferulic and pcoumaric acids) were revealed by heterocorrelated 1H–13C HSQC-NMR, and confirmed by 31P-NMR spectra of 31 P-labeled lignin molecules. An understanding of molecular composition of water-soluble lignins from biomass sources for energy is essential for lignin most efficient exploitation in either industrial or agricultural applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.