Abstract
Controlled growth of nanometer-scale multilayered coatings of negatively charged sulfonated poly(benzobisimidazole) (SPBI), complexed with positively charged poly(2-vinylpyridine) (P2VP) on quartz, and Nafion membrane as substrates has been explored. Both polymers, SPBI and P2VP, possess a net charge in methanol as a result of the dissolution of SPBI by complexation with triethylamine (TEA) and the protonation of P2VP with HCl, respectively, and thereby can form a multilayered molecular composite of alternating anionic SPBI and cationic P2VP via an electrostatic layer-by-layer (LbL) self-assembly. UV-vis absorption spectrophotometry was used to monitor the buildup and growth rate of such SPBI/P2VP multilayer films. Atomic force microscopy (AFM) was used to determine the roughness and thickness of the resulting SPBI/P2VP multilayers. As a result, it was found that a steady-state linear growth regime for the LbL self-assembled SPBI/P2VP multilayer films and coatings onto quartz and Nafion membranes was observed after completion of the first few deposition cycles, indicating the successful formation of the SPBI/P2VP multilayered assembly in methanol solutions. In addition, the SPBI/P2VP multilayer films in the perpendicular direction (flat view) demonstrated isotropic orientation distribution on the Nafion membrane, while the SPBI/P2VP multilayer films examined by X-ray scattering in the parallel direction (edge view) revealed anisotropic orientation, the combined observations indicating confinement of SPBI rods to the plane of the coating. We further found that the SPBI/P2VP multilayer coated Nafion possesses good thermal stability, as indicated by isothermal gravimetric analysis at 310 °C, and it was further observed that SPBI/P2VP multilayer coatings using the LbL self-assembly technique on Nafion membrane significantly increased the membrane stiffness, despite the small coating thickness employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.