Abstract

PEX7 is a soluble import receptor that recognizes peroxisomal targeting signal type 2 (PTS2)-containing proteins. In the present study, using a green fluorescent protein (GFP) fusion protein of PEX7 (GFP-PEX7), we analyzed the molecular function and subcellular localization of PEX7 in Arabidopsis thaliana. The overexpression of GFP-PEX7 resulted in defective glyoxysomal fatty acid beta-oxidation, but had no significant effect on leaf peroxisomal function. Analysis of the subcellular localization of GFP-PEX7 in transgenic Arabidopsis showed that GFP-PEX7 localizes primarily to the peroxisome. Transient expression of a C- or N-terminal fusion protein of PEX7 and yellow fluorescent protein (YFP) (PEX7-YFP and YFP-PEX7, respectively) in leek epidermal cells, using the particle bombardment technique, confirmed that fluorescent protein-tagged PEX7 localizes to peroxisomes in Arabidopsis. Immunoblot analysis revealed that GFP-PEX7 accumulates primarily in peroxisomal membrane fractions, whereas endogenous PEX7 was distributed evenly in cytosolic and peroxisomal membrane fractions, which indicated that both endogenous PEX7 and GFP-PEX7 are properly targeted to peroxisomal membranes. The results of bimolecular fluorescence complementation (BiFC) and yeast two-hybrid analyses showed that PEX7 binds directly to PTS2-containing proteins and PEX12 in the peroxisomal membrane. We used red fluorescent protein (tdTomato) fusion protein of PEX7 (tdTomato-PEX7) in several Arabidopsis pex mutants to identify proteins required for the targeting of PEX7 to peroxisomes in planta. The results demonstrated that pex14, pex13 and pex12 mutations disrupt the proper targeting of PEX7 to peroxisomes. Overall, our results suggest that the targeting of PEX7 to peroxisomes requires four proteins: a PTS2-containing protein, PEX14, PEX13 and PEX12.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.