Abstract

We are studying the mechanism by which the LamB protein is exported to the outer membrane of Escherichia coli. Using two selection procedures based on gene fusions, we have identified a number of mutations that cause alterations in the LamB signal sequence. Characterization of the mutant strains revealed that although many such mutations block LamB export to greater than 95%, others have essentially no effect. These results allow an analysis of the functions performed by the various molecular components of the signal sequence. Our results suggest that a critical subset of four amino acids is contained within the central hydrophobic core of the LamB signal sequence. If this core can assume an alpha-helical conformation, these four amino acids comprise a recognition site that interacts with a component of the cellular export machinery. Since mechanisms of protein localization appear to have been conserved during evolution, the principles established by these results should be applicable to similar studies in eukaryotic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.