Abstract

With the manipulation of surface charges and loadings, 1 nm super-acidic metal oxide clusters can co-crystallize with poly(ethylene glycol) (PEG) at molecular scale for thermoplastic anhydrous proton exchange membranes (PEMs). The coexistence of crystalline and amorphous regions endows the PEMs with a high Young's modulus and high flexibility, while the noncovalent complex interactions enable facile preparation and (re)processing. Furthermore, the diffusive dynamics of PEG chains is slowed by the confinement effect, while the local segmental dynamics is accelerated due to the transition of the chain conformation from helix to zigzag when confined in the crystalline framework. This greatly facilitates proton transportation in the crystalline region for an excellent anhydrous proton conductivity of 4.5 × 10-3 S cm-1 at 90 °C. The balanced proton conductivity, mechanical strength, and processability of the PEMs contribute to the promising power density of H2/O2 fuel cells assembled with co-crystalline PEMs at high temperatures under dry conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.