Abstract
Particulate Drug Delivery Systems (PDDS) are ther- apeutic methods that use nanoparticles to achieve their healing effects at the exact time, concentration level of drug nanoparti- cles, and location in the body, while minimizing the effects on other healthy locations. The Molecular Communication (MC) paradigm, where the transmitted message is the drug injection process, the channel is the cardiovascular system, and the received message is the drug reception process, has been investigated as a tool to study nanoscale biological and medical systems in recent years. In this paper, the various noise effects that cause uncertainty in the cardiovascular system are analyzed, modeled, and evaluated from the information theory perspective. Analytical MC noises are presented to include all end-to-end noise effects, from the drug injection, to the absorption of drug nanoparticles by the diseased cells, in the presence of a time-varying and turbulent blood flow. The PDDS capacity is derived analytically including all these noise effects and the constraints on the drug injection. The proposed MC noise is validated by using the kinetic Monte-Carlo simulation technique. Analytical expressions of the noise and the capacity are derived, and MC is presented as a framework for the optimization of particulate drug delivery systems (PDDS). Index Terms—Drug delivery systems, nanonetworks, molecu- lar communication, time-varying channels, communication chan- nels, intra-body communication, noise modeling, capacity, kinetic Monte-Carlo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.