Abstract
If polymer chains could be deposited on a substrate as a fully extended chain, a procedure known as "molecular combing," the chain structure could be characterized by atomic force microscopy in more detail than has been possible with the measurements available today. We show here, for the first time, that flexible polymers can be molecularly combed to fully extended chains by the dipping method. We studied the molecular combing of a series of poly(n-alkyl acrylate)s on mica from a chloroform solution by the dipping method and found that poly(n-alkyl acrylate)s with an alkyl group longer than n-octyl can be molecularly combed into straight chains under optimized conditions. With increasing alkyl lengths, the number of chains deposited decreases by four orders of magnitude, and chains become molecularly combed under a wider range of conditions. The length of the molecularly combed chains is ∼80% for poly(n-octyl acrylate) but ∼100% of the all-trans conformation for poly(n-alkyl acrylate)s with an alkyl length longer than n-nonyl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.